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IHE ECONOMIC IMELrCATEONS OF LEARNING BY DOING 

by 

Kenneth J.  Arrow 

Stanford University 

It is by now  incontrovertible that Increases in per capita income 

cannot be explained simply by increases in the capital-labor ratio. 

Though doubtless no economist would ever have  denied the role of 

technological change in economic  growth,   its overwhelming Importance 

relative to  capital formation has perhaps only "been fully realized with 

the important empirical   studies of Abramovitz   [1]   and Solow  [12].     These 

results do not directly contradict the neo-classical view of the 

production function as an expression of technological knowledge.     All 

that has to be added is  the obvious fact that knowledge is growing in 

time.     Nevertheless a view of economic growth that depends so heavily on 

an exogenous variable,   let alone one so difficult to measure as the 

quantity of knowledge,   is hardly intellectually satisfactory.     From a 

quantitative,   empirical point of view,  we  are left with time as an 

explanatory variable.     Now trend projections,  however necessary they may 

be in practice,  are basically a confession of ignorance,  and, what is 

worse  from a practical viewpoint,   are not policy variables. 

Further,   the concept of knowledge which underlies the production 

function at any moment needs analysis.    Knowledge has to be acquired. 

We are not surprised, as educators,   that even students subject to the 

same educational experiences have different bodies of knowledge,  and we 

may therefore be prepared to grant,   as has been   shown empirically (see 



[2],  Part III),  tnat different countries,   at the  same moment of time, 

have different production functions even apart from differences in 

natural resource endowment. 

I would like to  suggest here an endogenous theory of the  changes in 

knowledge which underlie intertemporal and international shifts in 

production functions.     The acquisition of knowledge is what is usually- 

termed "learning," and we might perhaps pick up  some clues from the many 

psychologists who have  studied this phenomenon (for a convenient survey, 

see Hilgard [5]).     I  do not think that the picture of technical change 

as a vast and prolonged process of learning about the environment in 

which we operate is in any way a far-fetched analogy;  exactly the  same 

phenomenon of Improvement in performance over time is Involved. 

Of course,  psychologists are no more in agreement than economists, 

and there are  sharp differences of opinion about the processes of 

learning.    But one empirical generalization Is so clear that all  schools 

of thought must accept It,   although they Interpret it In different 

fashions:    Learning is the product of experience.     Learning can only 

take place through the attempt to  solve a problem and therefore only 

takes place during activity.     Even the Gestalt and other  field theorists, 

who  stress the role of insight in the solution of problems  (Köhler*s 

famous  apes),have  to  assign a  significant role to previous experiences 

in modifying  the individual's perception. 

A  second generalization that  can be  gleaned from many of the 

classic  learning experiments  is  that learning associated with repetition 

of essentially the same problem is  subject to  sharply diminishing 

returns.     There  is an  equilibrium response pattern  for any given 



stimulus, toward, which the behavior of the learner tends with repetition. 

To have steadily increasing performance, then, implies that the stimulus 

situations must themselves be steadily evolving rather than merely 

repeating. 

The role of experience in increasing productivity has not gone 

unobserved, though the relation has yet to be absorbed into the main 

corpus of economic theory.  It was early observed by aeronautical 

engineers, particularly T. P. Wright [16], that the number of labor- 

hours expended in the production of an alrframe (airplane body without 

engines) is a decreasing function of the total number of alrframes of 

the same type previously produced.  Indeed, the relation is remarkably 

precise; to produce the N  alrframe of a given type, counting from the 

inception of production, the amount of labor required is proportional 

-1/3 zo    N ' .  This relation has become basic in the production and cost 

planning of the United States Air Force; for a full survey, see [3]. 

Hirsch (see [6] and other work cited there) has shown the existence of 

the same type of "learning curve" or "progress ratio," as it Is 

varloi:sly termed, in the production of other machines, though the rate 

of learning Is not the same as for alrframes. 

Verdoorn [1^] has applied the principle of the learning curve to 

national outputs; however, under the assumption that output is 

increasing exponentially, current output is proportional to cumulative 

output, and it is the former variable that he uses to explain labor 

productivity.  The estimated progress ratio for different European 

countries is about .5« 
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Lundberg ([9], pp. 129-133) has given the name "Homdal effect" 

to a very similar phenomenon.  The Homdal Iron vorks in Sweden had no 

new investment (and therefore presumably no significant change In its 

methods of production) for a period of 15 years, yet productivity 

(output per manhour) rose on the average close to 2 /o per annum. We 

find again steadily increasing performance vhich can only be Imputed to 

learning from experience. 
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I advance the hypothesis here that technical change in general can 

be ascrihed to experience, that it is the very activity of production 

which gives rise to problems for which favorable responses are selected 

over time.  The evidence so far cited, whether from psychological or 

from economic literature is, of course, only suggestive.  The aim of 

this paper is to formulate the hypothesis more precisely and draw from 

it a number of economic implications.  These should enable the 

hypothesis and its conseciuences to be confronted more easily with 

empirical evidence. 

The model set forth will be very simplified in some other respec s 

to make clearer the essential role of the major hypothesis; in particular, 

the possibility of capital-labor substitution is ignored.  The theorems 

about the economic world presented here differ from those in most standard 

economic theories; profits are the result of technical change; in a free- 

enterprise system, the rate of investment will be less than the optimum; 

net investment and the stock of capital become subordinate concepts, 

with gross Investment taking a leading role. 

In section 1, the basic assumptions of the model are set forth. 

In section 2, the implications for wage earners are deduced; in section 

3 those for profits, the inducement to invest, and the rate of Interest. 

In section h,  the behavior of the entire system under steady growth with 

mutually consistent expectations is taken up.  In section 5, the 

divergence between social and private returns is studied in detail for 

a special case (where the subjective rate of discount of future consump- 

tion is a constant).  Finally, in section 6, some limitations of the model 

and needs for further development are noted. 



1.  The Model 

The first question is that of choosing the economic variable which 

represents "experience." The  economic examples given above suggest the 

possibility of using cumulative output (the total of output from the 

beginning of time) as an index of experience, hut this does not seem 

entirely satisfactory.  If the rate of output is constant, then the 

stimulus to learning presented would appear to be constant, and the 

learning that does take place is a gradual approach to equilibrium 

behavior.  I therefore take instead cumulative gross investment 

(cumulative production of capital goods) as an index of experience. 

Each new machine produced and put into use is capable of changing the 

environment in which production takes place, so that learning is taking 

place with continually new stimuli.  This at least makes plausible the 

possibility of continued learning in the sense, here, of a steady rate 

of growth in productivity. 

The second question is that of deciding where the learning enters 

the conditions of production.  I follow here the model of Solow [13] 

and Johansen [7]> in which technical change Is completely embodied in 

new capital goods.  At any moment of new time, the new capital goods 

incorporate all the knowledge then available, but once built their 

productive efficiency cannot be altered by subsequent learning. 

To simplify the discussion we shall assume that the production 

process associated with any given new capital good is characterized by 

fixed coefficients, so that a fixed amount of labor is used and a 

fixed amount of output obtained.  Further, it will be assumed that new 

capital goods are better than old ones in the strong sense that, if we 
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compare a unit of capital goods produced, at time t. with one produced 

at time ^o > ^ '  **** f:i-rs"t requires the cooperation of at least as 

much labor as the second, end produces no more product. Under this 

assumption, a nev capital good will always be used in preference to an 

older one. 

Let G be cumulative gross investment. A unit capital good 

produced when cumulative gross investment has reached G will be said 

to have serial number G .  Let 

\(G) ■ amount of labor used in production with a capital good of 

serial number G, 

7(0) = output capacity of a capital good of serial number G , 

x = total output, 

L = total labor force employed. 

It is assumed that \(G) is a non-increasing function, while 7(G) is 

a non-decreasing function.  Then, regardless of wages or rental value of 

capital goods, it always pays to use a capital good of higher serial 

number before one of lower serial number. 

It will further be assumed that capital goods have a fixed life- 

time,  T .  Then capital goods disappear in the same order as their 

serial numbers.  It follows that at any moment of time, the capital 

goods in use will be all those with serial numbers from some G'  to 

G , the current cumulative gross investment.  Then 

rG 
(1)        x =  / 7(G)dG , 

(2) 
^G 

L =  / \(G)dG  . 



The magnitudes x, L,  G,   and G'  are, of course, all functions of 

time, to be designated by t , and they will be written x(t), L(t), 

G(t), and G'(t) when necessary to point up the dependence.  Then G(t), 

in particular, is the cumulative gross investment up to time t  .  The 

assumption about the lifetime of capital goods implies that 

(3)        G'{t) > G(t - T)  . 

Since G(t) is given at time t , we can solve for G'  from (l) 

or (2) or the equality in (3).  In a growth context, the most natural 

assumption is that of full employment.  The labor force is regarded as 

a given function of time and is assumed equal to the labor employed, so 

that L(t) is a given function.  Then G^t) is obtained by solving 

in (2).  If the result is substituted into (l),  x can be written as 

a function of L and G , analogous to the usual production function. 

To write this, define 

yi(G) = y\(G)dG  , 

^g) = / 7(G)dG  . 

These are to be regarded as indefinite integrals.  Since \(G)    and 

7(G)  are both positive, A (G) and r(G)  are strictly increasing 

and therefore have inverses, 7l" (u) and r~ (v) , respectively. 

Then (l) and (2) can be written, respectively, 

(!') x = r(G) - r{G')   , 

(21) L =      A(G)  -   A(G')     . 

Solve for    G'     from (2'). 

(5) 0'  -    A'Xl A(G)  -  L]   . 

Substitute  (5) into  (l'). 

CO 



(6) x - r(o) - r [A^UUo) - L3}    , 
which is thus a production function in a somewhat novel sense.  Equation 

(6) is always valid, hut under the full employment assumption we can 

regard L as the labor force available. 

A second assumption, more suitable to a depression situation, is 

that in which demand for the product is the limiting factor.  Then x 

is taken as given;  G'  can be derived from (l) or (l1), and employ- 

ment then found from (2) or (2').  If this is less than the available 

labor force, we have Keynesian unemployment. 

A third possibility, which, like the first, may be appropriate to 

a growth analysis, is that the solution (5) with L as the labor 

force, does not satisfy (3)-  In this case, there is a shortage of 

capital due to depreciation.  There is again unemployment but now due 

to structural discrepancies rather than to demand deficiency. 

In any case, except by accident, there is either unemployed labor 

or unemployed capital; there could be both in the demand deficiency 

case.  Of course, a more neo-classical model, with substitution between 

capital and labor for each serial number of capital good, might permit 

full employment of both capital and labor, but this remains a subject 

for further study. 

In what follows, the full-employment case will be chiefly studied. 

The capital shortage case, the third one, will be referred to 

parenthetically.  In the full-employment case, the depreciation 

assumption no longer matters; obsolescence, which occurs for all 

capital goods with serial numbers below G1 , becomes the sole reason 

for the retirement of capital goods from use. 



IHie analysis will be carried through for a special case.     To a very 

rough approximation, the capital-output ratio has been constant, while 

the labor-output ratio has been declining.    It is therefore assumed that 

(7) 7(G) = a , 

a constant, while    \(G)    is a decreasing function of    G     .     To be 

specific, it will be assumed that    \(G)    has the form found in the study 

of learning curves for airframes. 

(8) \(G) = bG"n    , 

where    n > 0  .     Then 

r(G) = aG, 7\(G) = cG1"11 , where    c  = b/(l-n)    for    n ^ 1   . 

Then (6) becomes 

(9) x = aG[l -  (1  - —t—)1/^-*)]    if    n ^ i     . 
cG 

Equation (9) is always well defined in the relevant range,   since from 

(2'), 

1 = A(G) - A(O') < A(G) = CG1"11 . 

When n = 1 , _A.(G) = b log G (where the natural logarithm is 

understood), and 

(10) x = aG(l-e"L/b) if n = 1  . 

Although (9) and (10) are, in a sense, production functions, they 

show increasing returns to scale in the variables G and L .  This is 

obvious in (10) where an increase in G , with L constant, increases 

x in the same proportion; a simultaneous increase in L will further 

increase x .  In (9) , first suppose that n < 1 .  Then a propor- 

tional increase in L and G increases L/G '  and therefore increases 

the expression in brackets which multiplies G .  A similar argument 



holds if n > 1  .  It should be noted that x increases more than 

proportionately to scale changes in G and L in general, not merely 

for the special case defined by (7) and (8).  This could he verified by 

careful examination of the behavior of (6), when it is recalled that 

X.(G) is non-increasing and 7(G) is non-decreasing, with the strict 

inequality holding in at least one.  It is obvious intuitively, since 

the additional amounts of L and G are used more efficiently than 

the earlier ones. 

The increasing returns do not, however, lead to any difficulty with 

distribution theory. As we shall see, both capital and labor are paid 

their marginal products, suitably defined.  The explanation is, of course, 

that the private marginal productivity of capital (more strictly, of new 

investment) is less than the social marginal productivity since the 

learning effect is not compensated in the market. 

The production assumptions of this section are designed to play 

the role assigned by Kaldor to his "technical progress function," 

which relates the rate of growth of output per worker to the rate of 

growth of capital per worker (see [8], section VIII).  I prefer to 

think of relations between rates of growth as themselves derived from 

more fundamental relations between the magnitudes involved.  Also, the 

present formulation puts more stress on gross rather than net investment 

as the basic agent of technical change. 

Earlier, Haavelmo ((4], sections 7.1 and 7.2) had suggested a 

somewhat similar model.  Output depended on both capital and the stock 

of knowledge; investment depended on output, the stock of capital, and 

the stock of knowledge.  The stock of know]edge was either simply a 
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function of time or, in a more sophisticated version, the consequence of 

investment, the educational effect of each act of investment decreasing 

exponentially in time. 

Verdoorn [15, pp. h^ß-J]  had also developed a similar simple model 

in which capital and labor needed are non-linear functions of output 

(since the rate of output is, approximately, a measure of cumulative 

output and therefore of learning) and investment a constant fraction of 

output.  He notes that under these conditions, full employment of capital 

and labor simultaneously is, in general, impossible—a conclusion which 

also holds for the present model, as we have seen.  However, Verdoorn 

draws the wrong conclusion: that the savings ratio must be fixed by 

some public mechanism at the uniquely determined level which would 

Insure full employment of both factors; the correct conclusion is that 

one factor or the other will be unemployed.  The social force of this 

conclusion is much less in the present model since the burden of 

unemployment may fall on obsolescent capital; Verdoorn assumes his 

capital to be homogeneous in nature. 

2.  Wages 

Under the full employment assumption, the profitability of using 

the capital good with serial number G' must be zero; for if it were 

positive, it would be profitable to use capital goods with higher serial 

number and if it were negative, capital good G'  would not be used, 

contrary to the definition of G1  .  Let 

w = wage rate with output as numeraire. 

From (1') and (7), 
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X(G') =b(G - f)-n 

(11) G' = G - (x/a) , 

so that 

(12) 

The output from capital good G1  Is 7(G') , vhile the cost of operation 

is \(G')W  .  Hence, 

7(0') = \iG')v     , 

or, from ( 7) and. (12), 

(13) v = a(G - f )7b  • 

It is interesting to derive labor's share, which is    wL/x    .     From 

(2'),  vith    A(G) =  cG1"11    and    G'     given by (ll). 

L =  c[G "   (G " ä)        ]      ^ 

for    n ^ 1     ,   and therefore 

Hh) T / r/G      2.\n  /G\l-n wL/x = a[(- - -)     (-) (§ - i)]/(l-n)    for    n ^  1    , x       a 
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where use has been made of the relation,  c = b/(l-n) .  It is interesting 

to note that labor's share is determined by the ratio G/x . 

Since, however, x is determined by G and L , which, at any 

moment of time, are data, it is also useful to express the wage ratio, 

w , and labor's share, wL/x , in terms of L and G .  First,  G'  can 

be found by solving for it from (2'). 

(15)       G' = (G1-11 - l^/Cl-n) for n ^ ! . 

We can then use the same reasoning as above, and derive 

(16) 

(17) 

w . a(ol-n . Ija/d-n)^ ) 

u  L v(l-n)/n  1 , L vl/n^n/d-n) 
u
Gl-n

;      " c ^Gl-n
;  J 

b[l - (1 - -^-^/d-n)] 
wL 
x 

a-n Labor's share thus depends on the ratio L/G   J it can be shown to 

decrease as the ratio increases. 

For completeness, I note the corresponding formulas for the case 

n = 1 .  In terms of G and x , we have 

(18)       w = (aG - x)/b , 

(19) 
,aG G/x 

WL/X = (^ -1) log (G/xy: (1/a) . 

In terms of G and L , we have 

(20)      n" _ P^-LA 

(21) 

G' = Ge 

aG 

(22) 

be1^ ' 

wL/x = z LA   ;; b(e '  - 1) 
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In this case, labor's share depends only on L , which is Indeed the 

appropriate special case (n=l) of the general dependence on L/C 

The preceding discussion has assumed full employment.  In the 

capital shortage case, there cannot he a competitive equilibrium with 

positive wage since there is necessarily unemployment.  A zero wage is, 

however, certainly unrealistic.  To complete the model, it would be 

necessary to add some other assumption about the behavior of wages. 

This case will not be considered in general; for the special case of 

steady growth, see Section 5« 

3.  Profits and Investment 

The profit at time t from a unit investment made at time 

v < t Is 

7[0(v)] - w(t) \[G(v)]  . 

In contemplating an investment at time v , the stream of potential 

profits depends upon expectations of future wages.  We will suppose 

that looking ahead at any given moment of time each entrepreneur assumes 

that wages will rise exponentially from the present level.  Thus the 

wage rate expected at time v to prevail at time t is 

, v e(t-v) 
w(v; e v   '  , 

and the profit expected at time v to be received at time t is 

7[G(v)] [l-W(v) ee(t-v)]  , 

where 

(23) W(v) = w(v) \[G(v)]/7[G(v)]  , 
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the labor cost per unit output at the time the investment is made.     The 

dependence of    W    on    v    will be made explicit only when necessary.     The 

profitability of the investment is expected to decrease with time (if 

0 > 0)    and to reach zero  at time     T* + v     ,  defined by the equation 

{2k) We =1 

Thus    T*    is the expected economic lifetime of the investment, 

provided it does not exceed the physical lifetime,     T     .    Let 

(25) T = min (T, T*)     . 

Then the investor plans to derive profits only over an interval of length 

T    ,   either because  the investment wears out or because wages have risen 

to the point where it is unprofitable to operate.     Since the expectation 

of wage rises which causes this abandonment derives from anticipated 

investment and the consequent technological progress,     T*    represents the 

expected date of obsolescence.     Let 

p    = rate of interest. 

If the rate of Interest is expected to remain constant over the  future, 

then the discounted stream of profits over the  effective lifetime,     T    , 

of the investment is 

T 
(26) 

or 

(27) 

Let 

(28) 

Then 

=     f      e-pt  7tG(v)]   (1   -  Weet)dt     , 

-(P - e)T S 
7[G(v)] 

-pT 
+ wli_ 

V =  e'9T = max  (e"eT,W),     a =  p/e 
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(29) 
OS 

7lG(v 
^ . i^ t wii^ü = R(a) 

The definitions of    R(a)    for    a = 0    and    a = 1    needed to make the 

function continuous are: 

R(0) =  -  log V + WU-V-1),  R(l) = 1  - V + W log V     . 

If all the parameters of  (26),  (27),  or (29) are held constant, 

S    is a function of    p     ,   and,  equivalently,     R    of    a    .     If (26) is 

differentiated with respect to    p    ,  we  find 

T 

Also 

dS/dp =    f   (-t)e"pt 7[G(v)]   (1 - W eet)dt < O     . 
J o 

S < 7[G(v)l   /     e"ptdt =  y[0(v)](l -  e-pT)/p 
J o 

< 7l0(v)]/p    . 

Since obviously    S > 0  ,     S    approaches    0    as    p    approaches infinity. 

Since    R    and    a    differ from    S    and    p    ,  respectively,   only by 

positive constant factors, we conclude 

dR/da < 0 ,       lim      R(a)  = 0     . 
a -» +oo 

To examine the behavior of    R(cif)    as    a    approaches    -oo   ,  write 

R(a)= -tVv? "" [(L^V + a w] ( i^) + i + ^   . 
(i-a) 

The last two terms approach zero. As a approaches -oo , 1 - a 

approaches -foo .  Since l/V > 1 , the factor 

am l-a 

(i-a)' 

approaches -foo , since an exponential approaches infinity faster than 
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any power.  From (28), V>W .  If V = W, then the factor, 

(i-a)v + a w = a(w-v) + v , 

is a positive constant; if V > W , then it approaches +QO as a 

approaches -oo .  Finally, 

i-g 
a 

necessarily approaches -1 . Hence, 

(30) R(cO  is a strictly decreasing function, approaching +00 as a 

approaches -00 and 0 as a approaches +00 

The market, however, should adjust the rate of return so that the 

discounted stream of profits equals the cost of investment, i.e.,  S = 1, 

or, from (29), 

(31) R(a) -  ©/7[G(v)] . 

Since the right-hand side of (31) is positive, (30) guarantees the 

existence of an a which satisfies (31). For a given 6 , the equilibrium 

rate of return,  p , is equal to a 9 ; it may Indeed be negative.  The 

rate of return is thus determined by the expected rate of increase in 

wages, current labor costs per unit output, and the physical lifetime of 

the Investment. Further, if the first two are sufficiently large, the 

physical lifetime becomes irrelevant, since then T* < T , and T = T* 

The  discussion of profits and returns has not made any special 

assumptions as to the form of the production relations. 

k.     Rational Expectations In a Macroeconomlc Growth Model 

Assume a one-sector model so that the production relations of the 

entire economy are described by the model of section 1.  In particular. 
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this implies that gross  investment at any moment of time is simply a 

diversion of goods that might otherwise be used for consumption.     Output 

and gross investment can then be measured in the  same units. 

The  question arises,  can the expectations assumed to govern invest- 

ment behavior in the preceding section actually be fulfilled? 

Specifically,  can we have a constant relative increase of wages and a 

constant rate of interest which,  if anticipated, will lead entrepreneurs 

to invest at a rate which,  in conjunction with the exogenously given 

rate of Increase of the  labor force,   cause wages to rise at the  given 

rate and the rate of interest to remain at the given level?    Such a 

state of affairs Is frequently referred to  as  "perfect foresight," but 

a better term is  "rational expectations," a term introduced by J.  Muth 

[10]   (as cited by Nerlove [11], pp.   kl-kg). 

We  study this question first for the full employment case.     For 

this case to occur, the physical lifetime of investments must not be an 

effective constraint.     If,  in the notation of the last section,     T* > T , 

and if wage expectations are correct,   then investments will disappear 

through depreciation at  a time when they are still yielding positive 

current profits.     As  seen in section 2,  this is incompatible with 

competitive equilibrium and full employment.    Assume therefore that 

(32) T* < T    ; 

then from (28),     W = V     ,  and from (29) and (31),  the equilibrium value of 

p    Is  determined by the  equation. 

(33) i-wa     w-tfa     e 
a i-a     a       ' 

where,  on the right-hand side,  use is made of (7)' 
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w = 1    n     _t_)°/(i-n) 

a-n 

From (l6), it is seen that for the wage rate to rise at a constant 

rate 9 ,  it is necessary that the quantity, 

_l-n  L 
G   " c  ' 

rise at a rate G(l-n)/n  .  For 0 constant, it follows from (33) that 

a constant p and therefore a constant a requires that W he constant. 

For the specific production relations (7) and (8), (23) shows that 

l(G
1"n - i)11/^1"11) 

cG" 

and therefore the constancy of W is equivalent to that of L/C  ' .  In 

combination with the preceding remark, we see that 

(31+) L increases at rate 0(l-n)/n , G increases at rate 

0/n  . 

Suppose that 

a = rate of increase of the lahor force, 

is a given constant.  Then 

(35) 6 = n cr/(l-n)  , 

(36) the  rate  of increase  of    G    is    cr/(l-n) 

Substitution into  the  production function   (9)  yields 

(37) the  rate of increase of    x    is    o/(l-n) 

From (36) and (37h  the ratio    G/x    is constant over time.     However,   the 

value  at which it is  constant  is  not  determined by the  considerations 

so far introduced;  the  savings  function is needed to  complete the  system. 

Let the constant ratio be 

(38) G(t)/x(t)   =  n     . 

Define 
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g(t) = rate of gross investment at time = dG/dt . 

From (36), g/G = o/(l-n) , a constant.  Then 

(39)  g/x = (g/G)(G/x) = ü a/(l-n)  . 

A simple assumption is that the ratio of gross saving (equals 

gross investment) to income (equals output) is a function of the rate 

of return, p ; a special case would be the common assumption of a 

constant savings-to-income ratio.  Then 1^ is a function of p 

the other hand, we can write W as follows, using (23) and (13): 

On 

xNn 

(1*0) w = 
a(G - -) v   a' b G ' = (1- ^)n = (1 - i-)n 

b       a 

Since 0 is given by (35), (33) is a relation between W and p  , 

and, by (hO)  between n and p  . We thus have two relations between 

l-t and p , so they are determinate. 

From (38),  ^ determines one relation between G and X  .  If 

the labor force, L , is given at one moment of time, the production 

function (9) constitutes a second such relation, and the system is 

completely determinate. 

As in many growth models, the rates of growth of the variables 

in the system do not depend on savings behavior; however, their levels 

do. 

It should be made clear that all that has been demonstrated is 

the existence of a solution in which all variables have constant rates 

of growth, correctly anticipated.  The stability of the solution requires 

further study. 

The growth rate for wages implied by the solution has one 

paradoxical aspect; it Increases with the rate of growth of the labor 
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force (provided n < 1 ).  The explanation seems to be that under full 

employment, the increasing labor force permits a more rapid introduction 

of the newer machinery. It should also be noted that, for a constant 

saving ratio, g/x , an increase in a decreases |i , from (39)» 

from which it can be seen that wages at the initial time period would 

be lower.  In this connection it may be noted that since G cannot 

decrease, it follows from (36) that  a and 1-n must have the same 

sign for the steady growth path to be possible.  The most natural case, 

of course, is cr>Ü,n<l 

This solution is, however, admissible only if the condition (32), 

that the rate of depreciation not be too rapid, be satisfied.  We can 

find an explicit formula for the economic lifetime, T* , of new invest- 

ment. From {2k),  it satisfies the condition 

e    = W . 

If we use (35) and (kO)  and solve for T*- , we find 

(»4-1) T* = (mi iog[i - 4] 

and this is to be compared with T J the full employment solution with 

rational expectations of exponentially increasing wages and constant 

Interest Is admissible if T*- < T  . 

If T*- > T , then the full employment solution Is inadmissible. 

One might ask If a constant-growth solution is possible in this case. 

The answer depends on assumptions about the dynamics of wages under 

this condition. 

We retain the two conditions, that wages rise at a constant rate 6 , 

and that the rate of Interest be constant. With constant 0 , the rate 

of interest,  p , Is determined from (31); from (29), this requires that 

(U2) W Is constant over time. 
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From the definition of W , (23), and the particular form of the 

production relations, (7) and (8), it follows that the wage rate, w  , 

must rise at the same rate as  G , or 

(43)     G rises at a constant rate 0/n . 

In the presence of continued unemployment, the most natural wage 

dynamics in a free market would he a decreasing, or, at best, constant 

wage level.  But since  G can never decrease, it follows from (U3) that 

9 can never he negative.  Instead of making a specific assumption ahout 

wage changes, it will be assumed that any choice of 6 can be imposed, 

perhaps by government or union or social pressure, and it is asked what 

restrictions on the possible values of Q  are set by the other equilibrium 

conditions. 

In the capital shortage case, the serial number of the oldest capital 

good in use is determined by the physical lifetime of the good, i.e., 

G' = G(t - T) .  From (^3), 

G(t - f) = e-Ö^n G  , 

Then, from (l1) and (7), 

x = aG(l - e 
-ei/n 

), 

so that the ratio, G/x , or  ^ , is a constant, 

(MO 

From (^3),  g/G = 9/n ; hence, by the same argument as that leading to 

^ ■ l/a(l - e  ' ) 

(39), 

(^5) g/x = e/na(l - e"eT/n)  . 

There are three unknown constants of the growth process, 9 , p , 

and W  .  If, as before, it is assumed that the gross savings ratio. 
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g/x , is a function of the rate of return,  p , then, for any given p , 

0 can be determined from (45); note that the right-hand side of (^5) is 

a strictly increasing function of 0 for 9 > 0 , so that the determina- 

tion is unique, and the rate of growth is an increasing function of the 

gross savings ratio, contrary to the situation in the full employment 

case.  Then W can be solved for from (31) and (29). 

Thus the rate of return is a freely disposable parameter vhose choice 

determines the rate of growth and W , which in turn determines the 

initial wage rate.  There are, of course, some inequalities which must be 

satisfied to insure that the solution corresponds to the capital shortage 

rather than the full employment case; in particular, W < V and also the 

labor force must he sufficient to permit the expansion.  From (21), this 

means that the labor force must at all times be at least equal to 

CG1""- c(G')1-n= CO1"^! - e-*1-^/*  ; 

if    er    Is the growth  rate of the labor force, we must then have 

(46) o->e(l-n)/n     , 

which sets an upper bound on     6     (for    n < l)     .     Other constraints on    p 

are implied by the conditions    9 > 0    and    W > 0     (if It is assumed that 

wage rates  are non-negative).     The  first condition  sets a  lower  limit on 

g/x  ;   it  can be   shown,   from  (45),   that 

(4?) g/x > l/af ; 

i.e., the gross savings ratio must be at least equal to the amount of 

capital goods needed to produce one unit of output over their lifetime. 

The constraint W > 0 implies an interval in which p must lie. The 

conditions under which these constraints are consistent (so that at least 
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one solution exists for the capital shortage case) have not been 

Investigated in detail. 

5«  Divergence of Private and Social Product 

As has already been emphasized, the presence of learning means 

that an act of Investment benefits future investors, but this benefit is 

not paid for by the market.  Hence, it is to be expected that the aggregate 

amount of investment under the competitive model of the last section vill 

fall short of the socially optimum level.  This difference will be Investigated 

in detail in the present section under a simple assumption as to the utility 

function of society.  For brevity, I refer to the competitive solution of the 

last section, to be contrasted with the optimal solution.  Full employment 

is assumed.  It is shown that the socially optimal growth rate is the same 

as that under competitive conditions, but the socially optimal ratio of 

gross investment to output is higher than the competitive level. 

Utility is taken to be a function of the stream of consumption derived 

from the productive mechanism. Let 

c = consumption = output - gross investment = x - g 

It is in particular assumed that future consumption is discounted at a 

constant rate,  ß  , so that utility is 

ikd) 
J o 

+QO -ßt r+00   -ßt c(t)dt =     / e'p x(t)dt 

L 
+00 

e-ßtg(t)dt 

Integration by parts yields 

+00 

L e"ßtg(t)dt  = e"ßtG(t) 
+00 .+00 

+ ß   / e_pT;G(t)dt     . 
o i/o 
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From {k3), 

1*9) 
where 

(50) 

U = 1^ - lim   e"ßtG(t) + G(0) , 
t -» +00 

"-L 
+00 

-ßt e"po[x(t) - ß G(t)](it 

The policy prohlem is the choice of the function G(t) ,  with 

GI(t)>0 ,  to  maximize (^9) , where x(t) is determined "by the produc- 

tion function (9)^ and 

(51) L(t) = L e 
ert 

The second term in (^9) is necessarily non-negative.  It will be shown 

that, for sufficiently high discount rate,  ß  , the function G(t) which 

maximizes U,  also has the property that the second term in (49) is zeroj 

hence, it also maximizes (^4-9), since G(0) is given. 

Substitute (9) and (51) into (50). 

ui • Pe-^t) (a - ß - a(l - ^M^)]M 
Jo cG 

Let G(t) = G(t) e-C7t/(l-n)  . 

.+00 -(ß - 5 )t L   ,//■.,  x 
U, = T    e     ^ G(t) [a - ß - a(l - _£_)1/(l-n)] 

Jo cG 
dt  . 

Assume that 

(52) ß > 1-n 

otherwise an infinite utility is attainable.  Then to maximize Ü,  it 

suffices to choose G( t)  so as to maximize, for each t  , 

L 
 c 

cG1 

Before actually determining the maximum, it can be noted that the 

(53) Ö[a-ß- a(l - J* ^/(l-«)] 
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fl 

• 

maximizing value of G is independent of t and is therefore a constant. 

Hence, the optimum policy is 

(!*) G(t) = G e^1"^  , 

so that, from (36), the growth rate is the same as the competitive.  From 

(52), e"ßtG(t) -» 0 as t -»+00 . 

To determine the optimal G , it will be convenient to make a change of 

var1able s.  De fi ne 

,     Lo .n/d-n) 
K 7rl-n; cG 

so that 

(55) G = [ 
l/(l-n) 

(l_v(l-nVn) 

The analysis will be carried through primarily for the case where the 

output per unit capital is sufficiently high, more  specifically, where 

(56) 

Let 

(57) 

a > ß 

If- 1 - |>0 a 

The maximizing G , or v , is unchanged by multiplying (53)» the function 

to be maximized, by the positive quantity,  (c/L ) '*   '/a    and then 

substituting from (55) and (57)-  Thus, v maximizes 

(1 - v(l-a)/n)-V(l-n)( » , vl/n)    > 

The variable v ranges from 0 to 1  .  However, the second factor 

vanishes when v = X  < 1 (since X < l) and becomes negative for larger 

values of v ; since the first factor is always positive, it can be assumed 

  in searching for a maximum, and both factors are positive. 

Then v also maximizes the logarithm of the above function, which is 
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M.-W-'^XiosO-vV-) ( 
f 

so that — . 2 

Clearly, with n < 1 , f (v) > 0 when 0 < v < ^ and f (v) < 0 

when  i < v <    1     , so that the maximum is ohtained at 

(58) v = jr . 

The optimum G is determined by substituting i    for v in  (55) • 

From (5^),  L/G "  is a constant over time.  From the definition 

of v    and (58)> then, 

« - (1 - -i-f/^1-) 
cG 

for all t along the optimal path, and, from the production function 

(9), 

(59) < = (1 - -^•)n for all t along the optimal path. 

This optimal solution will he compared with the competitive 

solution of steady growth studied in the last section.  From (^0), we 

know that 

(60) W=(l- —)  for all t along the competitive path. 

It will be demonstrated that W < 6 j from this it follows that the ratio 

G/x is less along the competitive path than along the optimal path. 

Since along both paths, 

g/x = tcr/(l-n)] (G/x) , 

it also follows that the gross savings ratio is smaller along the 

competitive path than along the optimal path. 
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For the particular utility function (48), the supply of capital 

is infinitely elastic at p = ß ; i.e., the community will take any 

Investment with a rate of return exceeding ß and will take no invest- 

ment at a rate of return less than ß .  For an equilihrium in which 

some, but not all, income is saved, we must have 

(61) P = ß • 

From (35),  6 = n(j/(l-n) ;  hence, by definition (28), 

(62) a = (l-n)ß/na . 

Since n < 1 , it follows from (62) and the assumption (52) that 

(63) a > 1 . 

Equation (33) then becomes the one by which W is determined. 

The left-hand side will be denoted as F(w)  . 

From (63),  F'tw) < 0 for 0 < W < 1 , the relevant range since the 

Investment will never be profitable if W > 1  .  To demonstrate that 

W < 7  , it suffices to show that F(w) > F(r) for that value of W 

which satisfies (33)J i.e., to show that 

{6k) F(7) < ©/a  . 

Finally, to demonstrate (64), note that 7 < 1 and a > 1  , 

(X which imply that 7 < 7  , and therefore 

(l-a) - 7 + a 7 > (l-a)(l-7) • 

Since  a > 1 , a(l-a) < 0  .  Dividing both sides by this magnitude 

yields 
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i - )(a , Ljg < 1 -Jf   0 
a:   ' 1 - a '  a 

where use is made of (57), (28), and (6l)| but from (33), the left-hand side 

is precisely F(< ) , so that (6^) is demonstrated. 

The case a < ß  , excluded by (56), can be handled similarly; in 

that case the optimum v is 0  .  The subsequent reasoning follows 

in the same way so that the corresponding competitive path would have 

W < 0  , which Is, however, impossible. 

6.  Some Comments on the Model 

(1) Many writers, such as Theodore Schultz, have stressed the 

improvement in the quality of the labor force over time as a source of 

increased productivity.  This interpretation can be incorporated in the 

present model by assuming that cr , the rate of growth of the labor 

force, incorporates qualitative as well as quantitative increase. 

(2) In this model, there is only one efficient capital-labor 

ratio for new investment at any moment of time. Most other models, on 

the contrary, have assumed that alternative capital-labor ratios are 

possible both before the capital good is built and after.  A still more 

plausible model is that of Johansen [7], according to which alternative 

capital-labor ratios are open to the entrepreneur's choice at the time 

of investment but are fixed once the Investment is congealed into a 

capital good. 

(3) In this model, as In those of Solow [13] and Johansen [7], the 

learning takes place in effect only in the capital goods industry; no 

learning takes place in the use of a capital good once built.  Lundberg's 

Horndal effect suggests that this is not realistic.  The model should 

be extended to include this possibility. 
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(h)    It has been assumed here that learning takes place only as a 

by-product of ordinary production.  In fact, society has created institu- 

tions, education and research, whose purpose it is to enable learning to 

take place more rapidly.  A fuller model would take account of these as 

additional variables. 
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